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The possibility of realizing the superradiant regime of electromagnetic emission by the assembly of quantum
dots is considered. The overall dynamical process is analyzed in detail. It is shown that there can occur several
qualitatively different stages of evolution. The process starts with dipolar waves triggering the spontaneous
radiation of individual dots. This corresponds to the fluctuation stage, when the dots are not yet noticeably
correlated with each other. The second is the quantum stage, when the dot interactions through the common
radiation field become more important, but the coherence is not yet developed. The third is the coherent stage,
when the dots radiate coherently, emitting a superradiant pulse. After the superradiant pulse, the system of dots
relaxes to an incoherent state in the relaxation stage. If there is no external permanent pumping, or the effective
dot interactions are weak, the system tends to a stationary state during the last stationary stage, when coher-
ence dies out to a low, practically negligible, level. In the case of permanent pumping, there exists the sixth
stage of pulsing superradiance, when the system of dots emits separate coherent pulses.
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I. INTRODUCTION

Superradiance is the effect of self-organized collective co-
herent radiation by an ensemble of radiators. The phenom-
enon of optical superradiance is well known for atoms and
molecules, being described in numerous publications �see.,
e.g., books1–3�. Optical superradiance from Bose–Einstein
condensed atoms has also been investigated.4 There also ex-
ists spin superradiance produced by spin systems, such as
nuclei5–8 or magnetic molecules.9–12 It has been suggested13

that the assemblies of quantum dots or wells could also be
arranged so that to produce superradiance. This can become
possible when the distance between the neighboring quantum
nanostructures is smaller than the radiation wavelength. In
that case, there appears an effective interaction between the
radiators, due to common radiation field. The modern tech-
nology of preparing materials with quantum dots allows
for the fabrication of the quantum dot assemblies with the
density of quantum dots sufficient for the appearance of such
an effective interaction,13–17 which has been detected
experimentally.18

Quantum dots, whose electrons or holes are confined in
all three spatial dimensions, have many properties19–22 that
make them similar to atoms, because of which quantum dots
are often called “artificial atoms.” One of the main such
properties is the existence of discrete energy levels, whose
shell structure can be adjusted by design. Some of these
properties are shared by quantum wells confining electrons
or holes in one dimension and allowing free propagation in
two dimensions. For concreteness, we shall concentrate in
what follows on the consideration of quantum dots.

Transferring electrons from the ground-state energy level
to an excited level creates a hole. The interacting pair of an
excited electron and a hole forms an exciton. The electron-
hole recombination is accompanied by the radiation of elec-
tromagnetic field, which is in a very close analogy with the
radiation of excited atoms. This is why it was reasonable to
assume23 that an ensemble of quantum dots can be employed

for the creation of quantum-dot lasers. Several types of
quantum-dot lasers have been demonstrated since then,
based on semiconductor heterojunctions24–29 and photonic
crystals.30–33 Quantum-well lasers have also been realized.
But the latter, because of thermal occupation of the quasi-
two-dimensional �quasi-2D� continuum, are essentially more
sensitive to temperature changes, which makes their emis-
sion less monochromatic than that of quantum dots.
Quantum-dot lasers also enjoy a lower current-density lasing
threshold. Because of these differences, quantum dots look
more suitable for the use as radiating devices.

When quantum dots are fabricated in the process of epi-
taxial growth, they are usually characterized by a noticeable
size dispersion, which results in the related inhomogeneous
broadening. The latter may hinder the possibility of achiev-
ing efficient dot interactions through the common radiation
field and, as a result, destroying the cooperative character of
emission, thus, suppressing coherence.15,34,35 However, the
impressive recent progress in controlling quantum-dot
parameters18,27 makes it now feasible to create quantum dots
so that they allow for the appearance of effective dot inter-
actions through electromagnetic field, which is a prerequisite
for achieving collective coherent radiation.

Because of the technological feasibility of fabricating
semiconductor samples with sufficiently dense and uniform
quantum dots, it should be possible to realize the conditions
for their superradiant emission. It is the aim of the present
paper to consider the quantum-dot superradiance. The main
goal is to develop an accurate and detailed description of all
stages of the superradiant dynamics, starting from the initial
stage, when collective effects are yet weak, to the coherent
stage of radiation, and further to the end of the whole pro-
cess. The developed theory makes it possible to describe
different types of superradiance, such as pure superradiance,
triggered superradiance, and pulsing superradiance.

The aim of the paper is to consider the realistic situation
corresponding to quantum dots, but not an oversimplified
model consideration. Therefore, in order to understand what
approximations are admissible for characterizing the process,

PHYSICAL REVIEW B 81, 075308 �2010�

1098-0121/2010/81�7�/075308�14� ©2010 The American Physical Society075308-1

http://dx.doi.org/10.1103/PhysRevB.81.075308


in the next section, an analysis of the parameters, typical of
semiconductors with quantum dots, will be given. Such an
analysis is necessary before plunging into mathematical for-
mulas in the following sections. The parameters are taken
from the literature cited above.

II. TYPICAL MATERIAL PARAMETERS

For realizing quantum-dot superradiance, it is reasonable
to take those materials that are used for quantum-dot lasers.
For the latter, one usually employs the self-assembled het-
erostructures, such as InAs/GaAs, InGaAs/GaAs, InGaAs/
AlGaAs, GaInAsP/InP, InAs/InP, InAs/GaInAs, AlInAs/
AlGaAs, InP/GaInP, AlGaAs/GaAs, and CdSe/ZnSe. There
exist different kinds of quantum dots, having different shapes
and sizes. Thus, the lateral size of a typical self-assembled
quantum dot is much larger than its vertical extent. Typical
dot sizes are of the order rdot�10−7–10−6 cm. In each dot,
there can be between just a few to 105 electrons. The dot
density in an epitaxy layer is of order 108–1011 cm−2. With
the width of the layer h�10−6–10−5 cm, this makes the spa-
tial density ��1013–1017 cm−3. The interdot distance is a
�10−5–10−4 cm. The lasing operation is realized at the
wavelength ��10−4 cm, which translates into the frequency
�0�1015 Hz. The natural width �0=2�d�2k0

3 /3, where k0
=2� /�, depends on the transition dipole d. The typical value
for the latter is d�100D. Taking into account that 1D
=10−17�erg · cm3 gives �0�1010 Hz. The actual homoge-
neous broadening is usually larger than �0, being �2
�1012–1013 Hz. For high-quality self-assembled dot mate-
rials, the inhomogeneous broadening can be made relatively
small, of the same order as �2, that is, of order �2

�

�1012–1013 Hz. The longitudinal relaxation time T1 is
mainly due to electron-phonon coupling, which can be
strongly suppressed by low temperatures. Thus, at helium
temperatures, the longitudinal dephasing time becomes lim-
ited only by the lifetime of inversion for a single quantum
dot in free space, T1�10−9 s, which gives �1�1 /T1
�109 Hz. To enhance a chosen mode, one places the sample
into a resonator cavity with a large quality factor reaching
104. The sizes of the sample can be different. Edge-emitting
lasers do not have a circular cross-section. The typical sizes
of quantum dot lasers can be R�10−3–10−2 cm.

Since the radiation wavelength is much larger than the dot
sizes, ��rdot, the dipole approximation is appropriate. For
sufficiently dense dot materials, the interdot distance can be
made much smaller than the wavelength, a��. Hence, there
can arise sufficiently strong dot interaction through the com-
mon radiation field. But the wavelength is much smaller than
the sample linear sizes, ��L. Therefore the Dicke-type36

approximation of a concentrated, pointlike, sample, cannot
be used. In strongly nonuniform materials, with a very large
inhomogeneous broadening �2

�, such that T2
��1 /�2

� is com-
parable with the time of the radiation pulse �p, superradiance
is suppressed.34 It is therefore necessary to prepare the
samples with a narrow distribution of dot sizes, resulting in
not too wide inhomogeneous broadening. Fortunately, the
fabrication of such samples is nowadays technologically pos-
sible. As is seen from the above values for typical param-

eters, the inhomogeneous broadening can be made of the
same order as the homogeneous one. When �2

���2, then the
consideration can be simplified by combining �2

� and �2 in
one effective parameter.37 Thus, the typical dephasing time is
rather short, T2�1 /�2�10−13–10−12 s. Superradiance is
possible only if the time of radiation pulse �p is shorter than
the dephasing time T2. In the following sections, the theoret-
ical description is developed, which takes into account the
typical characteristics of the quantum dot assemblies.
Throughout the paper, the system of units is used, where the
Planck constant 	�1.

III. BASIC OPERATOR EQUATIONS

Aiming at developing a realistic description of the system,
let us start with the microscopic Hamiltonian,

Ĥ = Ĥd + Ĥf + Ĥdf + Ĥmf , �1�

characterizing an ensemble of radiating quantum dots in a
semiconductor matrix inside a resonator cavity. The Hamil-
tonian,

Ĥd = �
i=1

N

�0�1

2
+ Si

z	 , �2�

where Si
z is a pseudospin operator of an i-th dot, represents N

two-level quantum dots, with the carrying transition fre-
quency �0. Mathematically, the operator Si

z is just a spin
operator. It is called the pseudospin operator, since it corre-
sponds not to an actual spin but to the population difference.
The radiation-field Hamiltonian,

Ĥf =
1

8�

 �E2 + H2�dr , �3�

contains electric field E and magnetic field H. The vector
potential A, introduced by the standard relation H=�
A, is
assumed to satisfy the Coulomb calibration � ·A=0. The
dot-field interaction is given by the Hamiltonian,

Ĥdf = − �
i=1

N �1

c
Ji · Ai + Pi · E0i	 , �4�

in which Ai�A�ri , t� and E0i�E0�ri , t� is a seed electric
field of the resonator cavity. The transition current,

Ji = i�0�dSi
+ − d�Si

−� , �5�

and transition polarization,

Pi = dSi
+ + d�Si

−, �6�

are expressed through the transition dipole d and the ladder
operators Si

��Si
x� iSi

y, where Si
��S��ri , t�. Since the cavity

is filled by a semiconducting material, the Hamiltonian,

Ĥmf = −
1

c

 jmat�r,t� · A�r,t�dr , �7�

describes the interaction of the local density current jmat�r , t�
in the filling matter with the radiated electromagnetic field.
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The field operators satisfy the equal-time commutation
relations,

�E��r,t�, A�r�,t�� = 4�ic���r − r�� ,

�E��r,t�, H�r�,t�� = − 4�ic�
�

���

�

�r���r − r�� , �8�

where ��� is the unitary antisymmetric tensor3 and the
transverse delta function is

���r� � 
 ��� −
k�k

k2 	eik·r dk

�2��3

=
2

3
����r� −

1

4�
D��r� , �9�

with the dipolar tensor,

D��r� �
�� − 3n�n

r3 ,

in which n�r /r= n�� and r��r�. The pseudospin operators
satisfy the spin commutation relations,

�Si
+,Sj

−� = 2�ijSi
z, �Si

z,Sj
�� = � �ijSi

�. �10�

The Heisenberg equations of motion for the field opera-
tors yield,

1

c

�E

�t
= � 
 H −

4�

c
j,

1

c

�A

�t
= − E , �11�

with the density of current,

j��r,t� = �

��

i=1

N

���r − ri�Ji
�t�

+
 ���r − r��jmat
 �r�,t�dr�� . �12�

From these, using the Coulomb calibration, one gets the
equation for the vector potential

��2 −
1

c2

�2

�t2	A = −
4�

c
j . �13�

The Heisenberg equations for the pseudospin operators
result in the equations,

dSi
−

dt
= − i�0Si

− + 2Si
z�k0d · Ai − id · E0i� ,

dSi
z

dt
= − Si

+�k0d · Ai − id · E0i� − Si
−�k0d� · Ai + id� · E0i� ,

�14�

where k0=�0 /c. These equations are to be complimented by
the retardation condition

Si
z�t� = 0 �t � 0� . �15�

Equations �11�–�15� are the basic operator equations de-
scribing all radiation processes in the system of quantum

dots. It is worth emphasizing that these equations follow
from the first principles. Such a microscopic approach is nec-
essary for correctly treating the overall dynamics of quantum
dot radiation.

IV. ELIMINATION OF FIELD VARIABLES

The standard way of considering the radiation processes is
by averaging Eqs. �11� and �14� and passing to the semiclas-
sical approximation. This way, presupposing well organized
coherence, does not allow for the treatment of those radiation
stages, when coherence has not been developed. Therefore,
we employ here another, more accurate, approach allowing
for the treatment of all radiation stages.

The first step in the approach to be pursued is the elimi-
nation of field variables.8 This can be done by solving Eq.
�13� for the vector potential and substituting the found solu-
tion into Eqs. �14� for the pseudospin operators. The known
solution of Eq. �13� is the sum,

A�r,t� = Avac +
1

c

 j�r�,t −

�r − r��
c

	 dr�

�r − r��
, �16�

of the vacuum potential and the retarded potential, with the
density of current given by Eq. �12�. This solution is to be
substituted into Eqs. �14�.

The interaction between the radiation field and a radiating
dot is assumed to be small as compared to the transition
frequency. This is a necessary requirement for the existence
of well defined energy levels in a dot. In the other case, the
transition frequency would not be defined in principle. This
implies that the retardation in the time dependence of the
current density can be taken into account in the Born ap-
proximation,

Sj
−�t −

r

c
	 = Sj

−�t���ct − r�eik0r, Sj
z�t −

r

c
	 = Sj

z�t���ct − r� ,

where ��t� is the unit step function.
When substituting the vector potential Eq. �16� into Eqs.

�14�, one meets the terms corresponding to the dot self ac-
tion. The contribution of these terms is characterized in the
Appendix. Finally, the vector potential Eq. �16� is repre-
sented as the sum,

A = Avac + Aself + Arad + Adip + Amat. �17�

Here the first term is due to vacuum fluctuations. The self-
action potential is described in the Appendix. The radiation
potential,

Arad�r,t� = �
j

2

3c�r − r j�
J j�t −

�r − r j�
c

	 , �18�

in which r�r j, describes the spherical part of the vector
potential, corresponding to the radiation field produced by
dots. In addition, the radiating dots create the dipolar part of
the vector potential,
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Adip
� �r,t� = − �

j
�


 D��r� − r j�

4�c�r − r��
Jj

�t −
�r − r��

c
	dr�.

�19�

The interaction of the semiconductor, filling the cavity, with
the radiation field produces the potential,

Amat
� �r,t� = �



 ���r� − r��

c�r − r��
jmat
 �r�,t −

�r − r��
c

	dr�dr�.

�20�

Substituting the vector potential Eq. �17� into Eqs. �14�, we
obtain the equations for the pseudospin operators, which do
not contain the field variables. Instead, there appear effective
dot interactions through the common radiation field.

V. STOCHASTIC MEAN-FIELD APPROXIMATION

The dynamics of the system can be characterized by the
behavior of the following functions. The transition function,

u�ri,t� � 2�Si
−�t��H �21�

where the angle brackets imply quantum statistical averaging
associated with the system Hamiltonian H, describes the lo-
cal effective polarization corresponding to dipole transitions.
The coherence intensity,

w�ri,t� �
2

N
�

j��i�

N

��Si
+�t�Sj

−�t��H + �Sj
+�t�Si

−�t��H� �22�

is the local characteristic of coherence. The intensity of co-
herent radiation is proportional to this function. The popula-
tion difference,

s�ri,t� � 2�Si
z�t��H, �23�

defines the local difference of populations for the energy
levels of an i dot.

To obtain the evolution equations for functions �21�–�23�,
we have to average the equations resulting after the substi-
tution of the vector potential Eq. �17� into the equations of
motion Eq. �14�. Such equations are not closed. To make
them closed, it is necessary to invoke some decoupling for
the operator correlation functions. If one resorts to the stan-
dard mean-field decoupling, one comes to the usual semi-
classical approximation. As is well known, the semiclassical
approximation can be used only when the system is in a
coherent state or is almost coherent.2,3 But incoherent re-
gimes cannot be described in this approximation. One of the
most interesting questions is how coherence develops in an
initially incoherent system. To be able to describe such a
regime, it is necessary to employ a more accurate approxi-
mation. For this purpose, we shall use the stochastic mean-
field approximation employed earlier for describing the dy-
namics of spin assemblies5–11 and Bose systems in random
fields.38–40

Let us combine the vacuum, dipole, and matter vector
potentials into the sum

��r,t� � 2k0d · �Avac + Adip + Amat� . �24�

The potentials, entering this sum, create local fluctuations of
electromagnetic field. Being averaged over space, quantity
Eq. �24� is practically zero. Therefore Eq. �24�, characteriz-
ing the strength of local field fluctuations, can be treated as a
local random variable. Contrary to this random variable, the
radiation potential Eq. �18� induces long-range effective in-
teractions between the radiating dots. The long-range radia-
tion potential Eq. �18�, with current Eq. �5�, is expressed
through the pseudospin operators S j. Hence the effective in-
teractions, arising between dots, are mathematically similar
to long-range spin interactions.

There is a direct similarity between the effective dipole
interactions caused by the dipole vector potential Eq. �19�
and the dipole5–11 and hyperfine interactions9–11,41,42 in spin
systems, these interactions being treated as stochastic fluc-
tuations playing destructive role by dephasing collective mo-
tion. While the effective pseudospin interactions, induced by
the radiation potential Eq. �18� in quantum dots, are equiva-
lent to the effective interactions produced by the resonator
feedback field in spin systems.9–11 The latter interactions are
responsible for the appearance of collective effects in mag-
netic and ferroelectric samples, including the arising
coherence.43 In spin systems without a resonator feedback
field, coherence, and, hence, superradiance, cannot develop,
being destroyed by the direct dipole interactions.5–11,44,45

In this way, it is possible to distinguish two types of
variables in the system, the random variable � describing
local field fluctuations and the pseudospin variables S j char-
acterizing effective long-range dot interactions. For brevity,
we may denote the collection of pseudospins S j : j
=1,2 , . . . ,N� by S. Then, the operators of observable quan-

tities Ô are, generally, functions of these variables, Ô
=Ô�S ,��.

Having two kinds of variables, it is possible to define two
types of averaging. One type corresponds to the quantum
statistical average,

�Ô�H � Tr �̂Ô�S,�� , �25�

involving the pseudospin operators S, with �̂ being the sys-
tem statistical operator, and where the random variable � is
kept fixed. Another type is the stochastic averaging over the
random fluctuations, denoted as

��Ô�� � 
 �̂Ô�S,��D� , �26�

which is defined through a functional integral over the ran-
dom variable �, with the prescribed differential measure D�.
Respectively, the total averaging

�Ô� � ����Ô�H��� , �27�

includes both, the quantum and stochastic, averages.
Keeping in mind the long range of the effective pseu-

dospin interactions, we can use the stochastic mean-field de-
coupling
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�Si
�Sj

�H = �Si
��H�Sj

�H �i � j� , �28�

where only the quantum averaging is involved. This decou-
pling looks like a mean-field approximation. However, it has
a very important principal difference form the latter, involv-
ing only the quantum averaging Eq. �25�, but not touching
the stochastic averaging Eq. �26�. Since no approximation is
done here with respect to the stochastic variables, decoupling
Eq. �28� preserves stochastic properties of the system. This is
why it is called the stochastic mean-field approximation.5–11

When the radiation wavelength � is much larger than the
interdot distance, the geometrical location of dots in space is
of no importance. Then it is convenient to pass to the con-
tinuous spatial representation, replacing the sums by the in-
tegrals according to the rule

�
j=1

N

⇒ �
 dr�� �
N

V
	 , �29�

with the integration over the whole system and � being the
dot density.

In order to represent the evolution equations in a compact
form, let us introduce the effective field, or effective force,
acting on dots

f�r,t� = f0�r,t� + frad�r,t� + ��r,t� . �30�

Here, the first term

f0�r,t� � − 2id · E0�r,t� �31�

is due to the external field E0. The second term,

frad�r,t� � 2k0�d · Arad�r,t��H �32�

is caused by the radiating dots. And the last term in Eq. �30�
is the fluctuating random field Eq. �24�. The radiation term
Eq. �32�, with the vector potential Eq. �18�, acquires the
form,

frad�r,t� = − i�0�
 �G�r − r�,t�u�r�,t�

−
d2

�d�2
G��r − r�,t�u��r�,t��dr�, �33�

in which the transfer kernel is

G�r,t� �
exp�ik0r�

k0r
��ct − r� . �34�

Finally, we average Eqs. �14� according to the quantum
averaging Eq. �25�, employ the stochastic mean-field decou-
pling Eq. �28�, and use notation Eq. �30�. Then for the vari-
ables Eqs. �21�–�23�, we obtain the evolution equations

�u

�t
= − �i�0 + �2�u + fs,

�w

�t
= − 2�2w + �u�f + f�u�s ,

�s

�t
= −

1

2
�u�f + f�u� − �1�s − �� , �35�

in which u=u�r , t�, w=w�r , t�, and s=s�r , t�. The longitudi-
nal, �1, and transverse, �2, attenuation rates are treated as the

system parameters, whose typical values are discussed in
Sec. II. The parameter � characterizes the level of stationary
nonresonant pumping. The evolution equation for w follows
from definition Eq. �22�, with the use of the Heisenberg
equations of motion for the pseudospin operators and the
stochastic mean-field decoupling Eq. �28�. Since in definition
Eq. �22�, the summation is over j� i, it is also possible, first,
to decouple the products of the pseudospin operators, accord-
ing to Eq. �28�, and then invoke the Heisenberg equations. In
any case, the result is the same equation for w.

Equations �35� are stochastic integro-differential equa-
tions. These are the basic evolution equations describing the
dynamics of radiation in a system of quantum dots.

VI. TRIGGERING DIPOLAR WAVES

As is mentioned above, the dipolar vector potential Eq.
�19� induces local fluctuations dephasing the radiation of the
dot assembly. However, these fluctuations play not only de-
structive role. They can be useful at the initial stage of the
radiation process, when the latter is not triggered by an ex-
ternal field. In such a case, the transition dipole fluctuations,
related to spontaneous emission, can trigger the process of
collective radiation.

In order to illustrate the appearance and the nature of the
dipolar fluctuations, let us consider the pseudospin Eqs. �14�,
leaving there only the terms related to the dipole interactions.
Let us introduce the interaction coefficients,

bij �
k0

2

2�
�
�

d�Dij
�d, cij �

k0
2

2�
�
�

d��Dij
�d��, �36�

where

Dij
� �
 ��ct − �ri − r���

D��r� − r j�
�ri − r��

exp�− ik0�ri − r���dr�.

The latter quantity, because of the unit-step function ��ct
− �ri−r��� in the integral, varies in time only at the very be-
ginning of the process, when t�a /c, after which it becomes
practically constant. Therefore, for all times, except t�a /c,
the interaction coefficients Eq. �36� can be treated as constant
parameters.

For the dipolar vector potential Eq. �19�, we have

k0d · Adip�ri,t� = −
i

2 �
j��i�

�bijSj
+�t� − cijSi

−�t�� .

Then the equations of motion reduce to

dSi
−

dt
= − i�0Si

− − iSi
z �

j��i�
�bijSj

+ − cijSj
−� ,

dSi
z

dt
=

i

2 �
j��i�

�Si
+�bijSj

+ − cijSj
−� − Si

−�bij
� Sj

− − cij
� Sj

+�� . �37�

The dipolar pseudospin fluctuations are described by the
small deviations
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�Si
� � Si

� − �Si
��, �Si

z � Si
z − �Si

z� , �38�

from the related average values �Si
��. The latter averages cor-

respond to equilibrium or quasiequilibrium, when they either
do not depend on time or are slow functions of time, as
compared to the fastly fluctuating deviations Eq. �38�. Lin-
earizing Eqs. �37� with respect to small deviations Eq. �38�,
under the condition �Si

−�=0, and taking into account that,
because of the properties of dipole interactions,

�
j��i�

bij = �
j��i�

cij = 0, �39�

we obtain the equations

d

dt
�Si

− = − i�0�Si
− − i�Si

z� �
j��i�

�bij�Sj
+ − cij�Sj

−� ,

d

dt
�Si

z = 0. �40�

Then we employ the Fourier transforms for the pseu-
dospin operators

Sj
� = �

k

Sk
� exp��ik · r j�, Sk

� =
1

N
�

j

Sj
� exp��ik · r j� ,

�41�

for the interaction coefficients

bij =
1

N
�

k

bk exp�ik · rij�, bk = �
j��i�

bij exp�− ik · rij� ,

�42�

and, similarly, for the interaction coefficients cij, where rij
�ri−r j. Taking into account that

�Sj
� = Sj

� ��Sj
�� = 0� �43�

and introducing the notation

�k � �0 − ck�Si
z�, �k � b−k�Si

z� , �44�

we come to the equations

dSk
−

dt
= − i�kSk

− − i�kSk
+,

dSk
+

dt
= i�k

�Sk
+ + i�k

�Sk
−. �45�

Looking for the solutions to Eq. �45� in the form

Sk
− = uke

−i�kt + vk
�ei�kt, Sk

+ = uk
�ei�kt + vke

−i�kt, �46�

we find the dipolar-wave spectrum

�k = ���k�2 − ��k�2. �47�

This means that the dipolar part Eq. �19� of the vector po-
tential generates local field fluctuations, having the meaning
of the transition dipolar waves with the spectrum Eq. �47�.
The interaction coefficients Eq. �36� are smaller than the
transition frequency, so that

�bk�
�0

� 1,
�ck�
�0

� 1. �48�

Hence,

��k�
�0

� 1,
��k�
��k�

� 1. �49�

Therefore the spectrum Eq. �47� is always positive, implying
that the dipolar waves are dynamically stable.46 In the long-
wave limit, when k→0 and

bk � −
1

2 �
j��i�

bij�k · rij�2, ck � −
1

2 �
j��i�

cij�k · rij�2,

the spectrum becomes quadratic, which follows from the ex-
pression

�k
2 � �0

2 + �0�Si
z�Re �

j��i�
cij�k · rij�2. �50�

The existence of these dipolar waves triggers the process of
dot radiation, even if no external field is imposed at the ini-
tial time.

VII. TRANSVERSE MODE EXPANSION

After the radiation process is triggered by the dipolar
waves, the overall radiation dynamics is described by Eq.
�35�, that is, stochastic integro-differential equations in par-
tial derivatives. If the sizes of the whole sample would be
much smaller than the radiation wavelength, we could essen-
tially simplify the problem by resorting to the concentrated-
sample approximation,1–3,36 when just one mode fills the cav-
ity. But in realistic situation, vice versa, the wavelength is
usually much smaller than the sample sizes, so that the
sample can house several modes. Then, to simplify the equa-
tions, it is necessary to specify the shape of the resonator
cavity.

For concreteness, let us assume that the cavity is cylindri-
cal, with radius R and length L, such that the wavelength is
much smaller than these sizes,

�

R
� 1,

�

L
� 1. �51�

Directing the cylinder axis along the axis z, we can treat the
resonator seed field as propagating along this axis, which is,
having the form

E0�r,t� =
1

2
E1ei�kz−�t� +

1

2
E1

�e−i�kz−�t�. �52�

The cavity is resonant in the sense of the small detuning of
the resonator natural frequency from the dot transition fre-
quency,

���
�0

� 1 �� � � − �0� . �53�

In the same way as it is for all dot-field interactions, for the
seed field, we have

��1�
�0

� 1 ��1 � �d · E1�� . �54�

In the cylindrical geometry, the radiation modes acquire
the shape of filaments extended along the axis z. Then, it is
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possible to represent the solutions to Eq. �35� as expansions
over the transverse modes,

u�r,t� = �
n=1

Nf

un�r�,t�eikz, w�r,t� = �
n=1

Nf

wn�r�,t� ,

s�r,t� = �
n=1

Nf

sn�r�,t� , �55�

where Nf is the number of the filamentary modes and r�

=�x2+y2 is the transverse radial variable. Ascribing to a
mode an effective enveloping radius Rf, for the effective en-
veloping volume of a filamentary mode, we have Vf =�Rf

2L.
Representation Eq. �55� is rather general, including the case
of just a single mode, when Nf =1 and Vf =V, with V being
the sample volume. We keep in mind that the sample and
cavity volumes coincide. This assumption does not reduce
the generality of consideration, since when these volumes are
different it is sufficient to take into account the existence of a
filling factor that is not equal to one.

In what follows, we assume that the distance df between
the axes of any two nearest-neighbor filaments is larger than
twice the filament enveloping radius. The physical condition,
corresponding to this assumption can be understood by tak-
ing into account that the filament enveloping radius is of the
order of the diffraction radius, i.e., Rf ���L. Then, from the
inequalities Rf �df �R, it follows that the Fresnel number
F=R2 /�L is to be large, F�1. Therefore, in the case of large
Fresnel numbers, different filamentary modes can be treated
as uncorrelated and considered separately from each other. In
such a case, we can reduce the consideration to studying the
behavior of each mode on average by defining the averages
over the enveloping volume of a mode as

u�t� �
1

Vf



Vf

un�r�,t�dr =
2

Rf
2


0

Rf

un�r,t�rdr ,

w�t� �
1

Vf



Vf

wn�r�,t�dr =
2

Rf
2


0

Rf

wn�r,t�rdr ,

s�t� �
1

Vf



Vf

sn�r�,t�dr =
2

Rf
2


0

Rf

sn�r,t�rdr , �56�

where, for the simplicity of the following notation, the index
n enumerating modes is omitted in the left-hand side of these
equations.

We also need to introduce the coupling functions,

��t� � �0�

Vf

��ct − r�
sin�k0r − kz�

k0r
dr ,

�t� � �0�

Vf

��ct − r�
cos�k0r − kz�

k0r
dr , �57�

the average stochastic field

��t� �
1

Vf

 ��r,t�e−ikzdr , �58�

and the effective force

f1�t� � − id · E1e−i�t + ��t� . �59�

Then, we substitute the mode expansions Eq. �55� into Eqs.
�35�, averaging the mode functions according to Eqs. �56�.
We use the condition that different spatial modes are not
correlated with each other, so that

�
mn

um�r�,t�eikzsn�r�,t� = �
n

un�r�,t�eikzsn�r�,t� .

And we employ the theorem of average in the integral



Vf

G�r� − r,t�un�r�,t�eikzsn�r�� ,t�drdr�

= u�t�s�t�

Vf

G�r� − r,t�eikzdrdr�.

Thus, using the above notations �57�–�59�, we obtain the
equations

du

dt
= − i��0 + s�u − ��2 − �s�u + f1s ,

dw

dt
= − 2��2 − �s�w + �u�f1 + f1

�u�s ,

ds

dt
= − �w −

1

2
�u�f1 + f1

�u�s − �1�s − �� , �60�

describing the evolution of an averaged mode characterized
by function �56�.

In this way, the mode expansion �55� allows us to trans-
form Eq. �35� in partial derivatives to Eq. �60� in ordinary
derivatives. The used mode-expansion method is based on
the idea of the eikonal approximation.47,48

Formally, the used mode-expansion method reduces the
general problem to a collection of effective single-mode ra-
diation problems, each decoupled from the others. Such a
reduction is, actually, the main idea of the eikonal approxi-
mation. Greatly simplifying the consideration, this reduction
leaves aside the question of what would be the distribution of
filament sizes. The latter is a separate problem, depending on
the sample shape.

VIII. SCALE SEPARATION APPROACH

Equations �60� are stochastic differential equations that
are not easy to solve. Fortunately, they can be further sim-
plified using the scale separation approach5–8,43 that is a vari-
ant of the averaging technique.49 In the present section, we
employ this approach.5–8,43

It is possible to notice that there are different time scales
in this system of equations. The attenuation rates, as dis-
cussed in Sec. II, are small as compared to the transition
frequency, thus, defining the small parameters
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�0

�0
� 1,

�1

�0
� 1,

�2

�0
� 1. �61�

It, therefore, follows from Eqs. �60� that the function u�t� is
fast in time, as compared to the slow functions in time w�t�
and s�t�. It is convenient to introduce other slow functions
having the meaning of the collective width,

� � �2 − �s , �62�

collective frequency

� � �0 + s , �63�

and effective detuning

� � � − � = � − s . �64�

These slow functions play the role of quasi-integrals of mo-
tion, or quasi-invariants, for the fast function u�t�. The first
of Eqs. �60� can be solved by keeping fixed the quasi-
integrals of motion, which gives

u = �u0 −
�1s

� + i�
	e−�i�+��t +

�1s

� + i�
e−i�t

+ s

0

t

��t��e−�i�+���t−t��dt�. �65�

The seed field Eq. �52� is defined up to a phase factor. Then,
without the loss of generality, the global phase of the seed
field can be chosen such that the value u0d ·E1 be real, where
u0�u�0�.

The found solution Eq. �65� has to be substituted into the
second and third of Eqs. �60� for the slow functions w�t� and
s�t�. The right-hand sides of the latter equations are to be
averaged over the explicitly entering time and over the sto-
chastic variable according to the rule

lim
�→�

1

�



0

�

�� . . . ��dt , �66�

with keeping fixed the quasi-invariants. The stochastic vari-
able �, describing local field fluctuations, by its definition, is
zero centered, such that

����t��� = 0. �67�

And the correlation function �����t���t���� defines the dy-
namic attenuation rate,

�3 � Re lim
�→�

1

�



0

�

dt

0

t

�����t���t����e−�i�+���t−t��dt�,

�68�

caused by these random fluctuations. The dynamic attenua-
tion rate Eq. �68� is essentially defined by the currents in the
semiconductor sample. These currents are usually much
stronger than those fluctuating in free space. This fact makes
the principal difference between the considered case of quan-
tum dots in semiconductor and atoms in free space. For the
latter, the attenuation rate Eq. �68� is usually much smaller
than the transverse relaxation rate �2, while for semiconduc-
tors, on the contrary, �3��2.

Let us introduce the effective attenuation rate

�3 � �3 +
��1�2�

�2 + �2 �1 − e−�t� , �69�

where ���� ���. Following the described averaging proce-
dure, we obtain the equations for the guiding centers

dw

dt
= − 2��2 − �s�w + 2�3s2,

ds

dt
= − �w − �3s − �1�s − �� .

�70�

Thus, the fast variables have been averaged out, while the
derived Eqs. �70� characterize the evolution of the slow vari-
ables.

IX. DYNAMICS OF DOT RADIATION

The temporal evolution of dot radiation through trans-
verse modes is described by Eqs. �70�. The solutions to these
equations essentially depend on the behavior of the coupling
functions �57�, whose values vary with time. It is possible to
distinguish several qualitatively different stages of evolution.

A. Fluctuation stage

At the initial time t=0, the coupling functions �57� are
zero. They remain small during the time interval

0 � t � tint, �71�

before the interaction time tint=a /c, when the dots have
not yet been correlated by means of the photon exchange.
The interaction time, for the interdot distance a
�10−5–10−4 cm is tint�10−15–10−14 s. In the time interval
Eq. �71�, the radiation process starts, being triggered by di-
polar waves considered in Sec. VI. These waves correspond
to the random local field fluctuations. As is seen from the
above estimates, the fluctuation stage is rather short. During
this stage, the functions w�t� and s�t� do not essentially
change, so that w�tint��w�0� and s�tint��s�0�.

B. Quantum stage

The quantum stage comes after the time tint, when the dot
interactions through photon exchange come into play, but
dots are not yet sufficiently correlated in order that coherence
would develop. At this incoherent stage, dots radiate inde-
pendently. The stage lasts till the coherence time tcoh that is
necessary for developing coherence. So, the temporal inter-
val related to the quantum stage is

tint � t � tcoh. �72�

During the interaction time tint, the coupling functions �57�
quickly grow, reaching, after tint, their maximal values,

��t� → g�2, �t� → g̃�2 �t � tint� .

Here we have introduced the dimensionless coupling
parameters
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g � �
�0

�2



Vf

sin�k0r − kz�
k0r

dr �73�

and, respectively,

g̃ � �
�0

�2



Vf

cos�k0r − kz�
k0r

dr . �74�

At this stage, the collective width Eq. �62� becomes

� = �2�1 − gs� �75�

and the collective frequency Eq. �63� is

� = �0 + g̃�2s . �76�

The role of the resonator seed field Eq. �52� is to select the
resonant frequency, but its amplitude is small, such that
��1���2. Therefore the effective attenuation Eq. �69� simpli-
fies to �3��3.

Using the above expressions and considering the case
when at the initial time no coherence is imposed by external
fields, so that w0�w�0�=0, from Eqs. �70� we have the
equations

dw

dt
= 2�3s2,

ds

dt
= − ��1 + �3�s + �1� . �77�

The second of these equations yields the population differ-
ence

s = �s0 −
�1�

�1 + �3
	exp− ��1 + �3�t� +

�1�

�1 + �3
. �78�

At short times, when ��1+�3�t�1, the population difference
is

s � s0 − �s0 −
�1�

�1 + �3
	��1 + �3�t +

1

2
�s0 −

�1�

�1 + �3
	


��1 + �3�2t2. �79�

Then the coherence intensity behaves as

w � 2�3s0
2t − 2�3s0��1 + �3��s0 −

�1�

�1 + �3
	t2

+
2

3
�3��1 + �3�2�s0 −

�1�

�1 + �3
	�2s0 −

�1�

�1 + �3
	t3.

�80�

From Eq. �79�, it follows that the population difference does
not essentially vary during this stage, being close to s0. Tak-
ing into account that �1��3, we find that the coherence
function Eq. �80� is either linear in time or cubic in time,

w � 2�3s0
2t �s0 � 0� ,

w �
2

3
�1

2�3�2t3 �s0 = 0� , �81�

depending on whether there exists or not the initial polariza-
tion s0�s�0�. The value of the function w in the former case,
if s0�1, is much larger than the value of w in the second

case. In the later case, the value of w is practically negligible.
This shows that in order that coherence could really develop,
it is necessary to have sufficient initial population difference
s0.

During the quantum stage, the evolution is mainly due to
random quantum fluctuations corresponding to the term �3s2,
while coherence starts being noticeable, when the term
�2�gs−1�w, responsible for collective effects, becomes of the
same order as the quantum term. That is, the coherence time
tcoh can be estimated from the equality

�2�gs − 1�w = �3s2 �t = tcoh� , �82�

when the quantum and collective terms coincide. This equal-
ity can hold only when gs�1. Since s does not vary much
during the quantum stage, the condition for the existence of
the coherence time can be written as

gs0 � 1, �83�

which implies that s0 must be positive. Equation �82� gives
the coherence time

tcoh =
s0/2

�2�gs0 − 1�s0 + �3s0 + �1�s0 − ��
. �84�

In the standard situation, when �1��2 and �2��3, the co-
herence time Eq. �84� reduces to

tcoh =
1/2

�2�gs0 − 1� + �3
. �85�

For sufficiently strong coupling, the coherence time is

tcoh �
T2

2gs0
�gs0 � 1� . �86�

To estimate the coherence time, let us take gs0�10. With
the dephasing time T2�10−13–10−12 s, we get tcoh
�10−14–10−13 s. At the end of the quantum stage, solutions
�79� and �80� are well approximated by the forms

w�tcoh� � 2�3tcohs0
2, s�tcoh� � s0. �87�

The coherence function w here is yet very small, being of
order 1 /gs0�1, and the population difference is yet close to
the initial value s0.

C. Coherent stage

After the coherence time, collective effects become domi-
nant. Coherence can last during the time interval

tcoh � t � T2. �88�

At this stage, taking into account that T2�T1, hence, �1
��2, Eqs. �70� take the form

dw

dt
= − 2�2�1 − gs�w,

ds

dt
= − g�2w . �89�

These equations enjoy the exact solutions describing the su-
perradiant pulse
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w = � �p

g�2
	2

sech2� t − t0

�p
	, s =

1

g
−

�p

g�2
tanh� t − t0

�p
	 ,

�90�

where the integration constants �p�1 /�p and t0 are defined
by the initial condition �87�. The pulse width �p is given by
the relations

�p
2 = �g

2 + 2�g�2�2�3tcohs0
2, �g � �gs0 − 1��2, �91�

which, keeping in mind that �3tcoh�1, yields the pulse time

�p =
T2

gs0 − 1
�1 −

�3tcohg2s0
2

�gs0 − 1�2� . �92�

The second integration constant is the delay time

t0 = tcoh +
�p

2
ln��p + �g

�p − �g
� , �93�

corresponding to the maximum of the pulse. In view of the
inequality �3tcoh�1, the pulse width can be represented as

�p = �gs0 − 1��2 +
g2�2�3tcohs0

2

gs0 − 1
, �94�

where condition �83� is taken into account. Then the delay
time Eq. �93� is

t0 = tcoh +
�p

2
ln�2�gs0 − 1�2

g2�3tcohs0
2 � . �95�

In the case of strong coupling gs0�1, we have

t0 � tcoh + tcoh ln� 2

�3tcoh
� , �96�

with �p�2tcoh, and the coherence time is given by Eq. �86�.
For �3��2�1012–1013 Hz and tcoh�10−14–10−13 s, we
have �3tcoh�0.01–0.1. Then t0�5tcoh. For the coupling
gs0�1, the pulse width, as follows from Eq. �92�, is �
�T2 /gs0, which is inversely proportional to the dot density
�, that is, it is inversely proportional to the number of dots
taking part in the radiation process. This is a typical feature
of superradiant emission.

The described coherent radiation arises as a self-organized
process caused by the dot interactions through the common
radiation field. At the initial time no coherence has been
imposed on the system, so that w�0�=0. The radiation pro-
cess is triggered by the transition dipolar waves, and coher-
ence develops from the initially incoherent chaotic stages.
This process of coherence, self-consistently arising from
chaos, is the most interesting and the most difficult for de-
scription. The appearing superradiant emission is called pure
superradiance.

The situation is much simpler, when coherence is imposed
on the system from the very beginning, by means of an ex-
ternal field, such that w�0��0. If the system is coherent
starting from t=0, the incoherent stages do not exist, which
implies that tcoh is zero. The resulting coherent emission cor-
responds to the triggered superradiance. The superradiant
pulse is described by the solutions of the same form Eq. �90�,
but with the pulse width given by the expression

�p
2 = �g

2 + �g�2�2w0,

where w0�w�0��0. Then the pulse time is

�p =
1

��g
2 + �g�2�2w0

.

For sufficiently strong coupling, such that gs0�1, the pulse
time becomes

�p �
T2

g�s0
2 + w0

.

In the case of the triggered superradiance, the pulse time
depends both on the initial population inversion as well as on
the level of the imposed coherence.

D. Relaxation stage

In the time interval

T2 � t � T1, �97�

when also t� t0, the coherent solution �90� decays as

w � �2�p

g�2
	2

exp�−
2t

�p
	, s �

�2 − �p

g�2
+

2�p

g�2
exp�−

2t

�p
	 .

�98�

Coherence dies out and the population difference relaxes to

s �
�2 − �p

g�2
�t � t0� , �99�

corresponding to s inverted as compared to its initial value
s0. For strong coupling gs0�1, when �p�2tcoh, tcoh
�1 / �2�2gs0�, and �p��2gs0, expression �99� equals −s0,
which implies practically complete inversion.

E. Stationary stage

In the present subsection, we assume that either there is
no permanent pumping, so that �=−1 or that the external
pumping is weak, such that �g���1. Then, at asymptotically
large time,

t � T1, �100�

the system tends to its stationary state. All terms of Eq. �70�
play role at this stage. That is, the evolution is described by
the equations

dw

dt
= − 2�2�1 − gs�w + 2�3s2,

ds

dt
= − g�2w − �3s − �1�s − �� . �101�

In order to find out the stable stationary solutions, it is nec-
essary to resort to the Lyapunov stability analysis. For this

purpose, we calculate the Jacobian matrix Ĵ�t�= �Jij�t��,
whose elements are
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J11 �
�

�w
�dw

dt
	 = 2�2�gs − 1� ,

J12 �
�

�s
�dw

dt
	 = 2�2gw + 4�3s ,

J21 �
�

�w
�ds

dt
	 = − g�2, J22 �

�

�s
�ds

dt
	 = − �1 − �2.

The stationary solutions are given by the zeros of the right-
hand sides of Eqs. �101�. Evaluating the Jacobian matrix at
the fixed points, we analyze the stability of the latter. Below,
only the stable stationary solutions are presented.

In the case when g��−1, the stable stationary solutions
are

w� �
�3���
�2�g�

, s� � ��1 −
�3

�1�g��	 , �102�

which correspond to a stable node, since the eigenvalues of
the Jacobian matrix, defining the characteristic exponents,
are all negative,

J1 � − �1 − �3, J2 � − 2�2�g�� .

The coherence function w is very small.
For weak pumping, such that �g���1, the stable station-

ary solutions are

w� � � �1�

�1 + �3
	2�3

�1
�1 +

�1��1 − �3�g�

��1 + �3�2 � ,

s� �
�1�

�1 + �3
�1 −

�1�3g�

��1 + �3�2� , �103�

which also correspond to a stable node, as far as the charac-
teristic exponents are

J1 � − �1 − �3, J2 � − 2�2.

Because of the relations �1��2��3, the level of coherence
is very small, that is, w��1. At the stationary stage, when
there is no external pumping, coherence is practically absent,
since it has been died out yet during the relaxation stage. The
population difference at this stage is close to �1� /�3.

F. Pulsing superradiance

In the case when there is a sufficiently strong external
pumping, such that g��1, the fixed points

w� �
�1�

�2g
, s� �

1

g
�1 −

�3

�1g�
	 , �104�

represent a stable focus, with the characteristic exponents

J1,2 � −
1

2
��1 + �3� � i�ef f ,

in which the effective asymptotic frequency is

�ef f � �2g��1�2.

The effective asymptotic frequency �ef f defines the effective
asymptotic period

Tef f �
2�

�ef f
= ��2T1T2

g�
. �105�

In this regime, there occurs a series of superradiant pulses,
bursting in the intervals of time close to the effective period
Eq. �105�. The total number of such pulses is of order
T1 /Tef f. In the presence of a permanent nonresonant pump-
ing, guaranteeing the value ��1, the quantity �1 acquires the
meaning of the pumping rate, which can be made compa-
rable with �2. Therefore, the number of pulses is of order
�g�. Hence, there can be produced several, around 10,
pulses. The interval between the superradiant pulses is of
order Tef f �10−13 s.

G. Numerical illustration

In order to illustrate the dynamics of radiation in graphi-
cal form, we calculate numerically the quantities w and s as
functions of time for some parameters typical of quantum
dots. To evaluate these parameters, we use the values from
Sec. II, from where we have �0 /�2�10−2–10−3 and �1 /�2
�10−4–10−3. The value of the coupling parameter g, given
in Eq. �73�, is g���0 /�2���3. The coherence factor ��3

�10–105. Thence, g�10−2–103. According to condition
�83�, well-developed coherence appears when gs0�1. Since
the initial condition s0 cannot be larger than 1, it should be
that g�1. And, as is mentioned above, for semiconductors,
�3��2.

Figures 1–3 show the evolution of w=w�t� and s=s�t� as
functions of dimensionless time t, measured in units of T2
�1 /�2, for several typical cases. We assume that at the ini-
tial time, the system is inverted, but coherence is absent and
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FIG. 1. �Color online� The coherence intensity w �solid line� and
population difference s �dashed line� as functions of dimensionless
time �measured in units of T2� for the attenuation parameters �1

=0.003, �3=1 �measured in units of �2�, for the coupling param-
eter g=10, with the initial conditions w0=0, s0=1.
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develops in a self-organized way. Recall that the standard
mean field or semiclassical, approximation cannot describe
such a self-organized appearance of coherence. Figures 1 and
2 correspond to the case of no external pumping, when �=
−1. The difference between these figures is in the value of
the dynamical attenuation rate. As we see, the larger �3 de-
creases the delay time and makes the superradiant pulse
strongly asymmetric. Recall that for atoms in free space, �3
is usually much smaller than �2, because of which superra-
diant pulses produced by atoms are more symmetric. The

essential asymmetry of superradiant pulses is the feature
typical of quantum-dot radiation. Another typical feature of
the quantum-dot dynamics, also caused by the large rate �3,
is the much faster, than for atoms in free space, tendency of
the population difference to the stationary state. Figure 3
demonstrates the radiation dynamics in the case of an exter-
nal pumping, when �=1, and there appear several superradi-
ant pulses with decaying amplitude.

X. CONCLUSION

The theory of quantum-dot radiation is developed being
based on microscopic equations. The possibility of realizing
the superradiant regime is analyzed. The temporal evolution
during all radiation stages is studied in detail. A special at-
tention is paid to the process when coherence arises from an
initially incoherent state. The description of this process is
impossible by means of the standard semiclassical equations,
because of which a more accurate method has been used in
the paper, employing the stochastic mean-field approxima-
tion that has been developed earlier and applied for describ-
ing the dynamics of spin assemblies,5–11 Bose systems in
random fields,38–40 and atomic squeezing.50

It is necessary to emphasize that the radiation dynamics of
quantum dots has several specific features distinguishing this
dynamics from atomic radiation. This is connected, first of
all, with rather different values of physical dot parameters, as
compared to atomic parameters. Because of this, despite
many analogies, the theory of dot radiation requires a sepa-
rate investigation. The principal theoretical points that have
been suggested in the present paper for the adequate descrip-
tion of dot radiation are as follows:

�i� Because of essential current fluctuations in semicon-
ductor, the standard semiclassical approximation, often used
for atoms in free space, is not applicable for quantum dots.
For the latter more elaborate techniques are required, such as
the stochastic mean-field approximation.

�ii� Taking into account the fluctuation of current makes
the dynamic attenuation parameter �3 of the order or larger
than �2. This is contrary to the case of atoms in free space,
where usually �2 is the largest relaxation parameter.

�iii� For the correct description and principal understand-
ing of the mechanism, triggering the beginning of the radia-
tion process, it is important to stress the existence of trigger-
ing dipolar waves.

�iv� The single-mode picture is not applicable for quan-
tum dots. It is necessary to consider a bunch of transverse
modes forming spatial filaments. To reduce the consideration
to a treatable problem, it is necessary to involve some tricks,
such as the transverse-mode expansion.

�v� The overall dynamics of dot radiation consists of sev-
eral stages, which have been thoroughly studied and de-
scribed, both analytically and numerically, for the parameters
typical of quantum dots.

In the dynamics of dot radiation, it is possible to distin-
guish the following qualitatively different stages. The first is
the fluctuating stage lasting during the time interval 0� t
� tint, when the radiation process is triggered by dipolar
waves. At this stage, there is no yet sufficiently strong inter-
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FIG. 2. �Color online� The coherence intensity w �solid line� and
population difference s �dashed line� as functions of dimensionless
time �measured in units of T2� for the attenuation parameters �1

=0.003, �3=10 �measured in units of �2�, for the coupling param-
eter g=10, with the initial conditions w0=0, s0=1. The larger dy-
namic attenuation �3 makes the pulse more asymmetric.
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FIG. 3. �Color online� The coherence intensity w �solid line� and
population difference s �dashed line� as functions of dimensionless
time �measured in units of T2� in the case of an external pumping,
for the parameters �1=10, �3=1 �measured in units of �2�, for the
coupling parameter g=100, with the initial conditions w0=0, s0

=1. The coherence intensity, as well as population difference, ex-
hibit five pulses with decaying amplitude.

V. I. YUKALOV AND E. P. YUKALOVA PHYSICAL REVIEW B 81, 075308 �2010�

075308-12



action between dots. The interaction time is of order tint
�10−15–10−14 s.

The second is the quantum stage in the temporal interval
tint� t� tcoh, when the dot interactions through photon ex-
change start playing noticeable role, but coherence has not
yet been developed. The coherence time, required for the
appearance of well developed coherence, is of order tcoh
�10−14–10−13 s.

Then the coherent stage comes into play in the interval
tcoh� t�T2, when the dots emit a coherent superradiant
pulse. For the quantum dot materials, the dephasing time is
of order T2�10−13–10−12 s. The maximum of the pulse oc-
curs at the delay time t0�5tcoh and the pulse duration is �p
�2tcoh. The pulse duration is inversely proportional to the
dot density, that is, inversely proportional to the number of
dots, involved in the process of radiation, which is a typical
feature of superradiance.

After the superradiant pulse is emitted, the system relaxes
to an incoherent state during the relaxation stage in the in-
terval T2� t�T1. The population difference reverses. For the
system of dots in a semiconducting material, the longitudinal
relaxation time is T1�10−9 s. But this is not yet the final
stage of evolution.

The stationary stage is reached for t�T1, if there is no
external permanent pumping or the effective dot interactions
are weak, so that �g���1. Then the system tends to a station-
ary incoherent state representing a stable node.

If the system of dots is subject to a sufficiently strong
external permanent pumping, such that �g���1, the regime
of pulsing superradiance occurs. Then a series of about 10
superradiant bursts can appear, flashing in the intervals of
time Tef f �10−13 s.
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APPENDIX

Here, the explanation is given of the contributions coming
from the dot self-action. For a dot located at r=0, the self-
action vector potential is

Aself
� �r,t� =

1

c
�


 ���r��

�r − r��
J�t −

�r − r��
c

	dr�, �A1�

with the current

J�t −
r

c
	 = i�0�dS+�t�e−ik0r − d�S−�t�eik0r���ct − r� ,

�A2�

in which S��t��S��0, t�. At short distance, such that k0r
�1, one has exp�ik0r��1+ ik0r. Substituting the transverse
delta-function Eq. �9� into the vector potential Eq. �A1�, we
keep in mind that the averaging of the dipolar tensor over
spherical angles yields zero. As a result, the vector potential
Eq. �A1� becomes

Aself�r,t� =
2

3
k0

2�dS+�t� + d�S−�t�� + i
2k0

3r
�dS+�t� − d�S−�t�� .

�A3�

Averaging this expression over the radial variable between
the electron wavelength �e=2� /mc, with m being the elec-
tron mass, and the radiation wavelength �=2� /k0, and tak-
ing into account that �e��, we get the self-action potential

Aself�t� =
2

3
k0

2�dS+�t� + d�S−�t�� +
ik0

3�
ln�mc2

�0
	


�dS+�t� − d�S−�t�� . �A4�

Let us introduce the natural width

�0 �
2

3
�d�2k0

2 �A5�

and the Lamb shift

�L �
�0

2�
ln�mc2

�0
	 . �A6�

Then the terms in Eqs. �14�, induced by the self-action po-
tential Eq. �A4�, are

2k0Szd · Aself = �i�L − �2�S− +
d2

�d�2
��2 + i�L�S+ �A7�

for the first of Eqs. �14� and

k0�Si
+d + Si

−d�� · Aself = �1�1

2
+ Sz	 �A8�

for the second, where �1=2�0 and �2=�0. In the standard
situation, one has

�0

�0
� 1,

�L

�0
� 1. �A9�

The Lamd shift, without the loss of generality, can be in-
cluded in the definition of the transition frequency �0.
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